(%i1) | sin(%pi/2); Sin(%pi/2); sin(%Pi/2); |
(%i4) |
a:1$ b:2$ a + b; |
(%i7) | c = 5; c; |
(%i9) | 2*x + 1 = 7; solve(%, x); |
(%i11) | expr1: 2*x + 1 = 7$ solnx: solve(expr1, x); ev(expr1, solnx); |
(%i14) |
fpprec:60$ q : sqrt(2); 1 + q; bfloat(q); bfloat(1+q); |
(%i19) |
kill(all); values; functions; |
(%i3) |
a:1$ b:2$ f(x) := x^2$ g(x):=x^3 $ kill(a,f); values; functions; g(b); |
(%i11) |
kill(all)$ f(x) := sin(x)/(1-x); [f(0), f(%pi/2), f(1 + h), f(x + h)]; |
(%i3) | f(1); |
(%i4) | limit(f(x), x, 1); |
(%i5) | limit(f(x), x, 1, plus); limit(f(x), x, 1, minus); |
(%i7) |
graph1: gr2d( explicit(f(x), x, -4*%pi, 4*%pi) )$ graph2: gr2d( xaxis=true, yaxis = true, yrange= [-1, 1], explicit(f(x), x, -4*%pi, 4*%pi) )$ wxdraw( graph1, graph2 ); |
(%i10) |
g(x) := if x < 2 then x^2 else sqrt(x); transpose( matrix([g(0), g(2.5), g(4.999), g(5), g(5.0)]) ); |
(%i12) |
wxdraw2d( yrange = [-2, 5], key = string(f(x)), explicit( f(x), x, -5, 10), color = black, key = string(g(x)) , explicit(g(x), x, -2, 10) )$ |
(%i13) |
diffratio: (f(x+h) - f(x) )/h; dr_limit: limit(diffratio, h, 0); ratsimp(%); |
(%i16) | diff(f(x), x); ratsimp(%); |
(%i18) |
wxdraw2d( yrange=[-1,10], key = "f(x)", explicit( f(x), x, -10, 10), line_width = 2, key = "diff", explicit( diff(f(x), x), x, -10, 10 ) )$ |
(%i19) |
kill(all) $ depends(f, x, g, x)$ diff(f + g, x); diff(f*g, x); diff(f/g, x); ratsimp(%); |
(%i6) |
kill(all) $ /* depends(f, x, g, x)$ */ diff(f + g, x); diff(f*g, x); diff(f/g, x); |
(%i4) |
kill(all)$ f(x) := x^(1/2); g(x) := 1 + x^2; answer: diff(f(x)/g(x), x); factor(answer); |
(%i5) | pickapart( factor(answer),2); |
(%i7) | soln: solve(%t5,x); |
(%i8) | the_first_soln: soln[1]; /* or */ first(soln); |
(%i10) | the_first_soln_value : rhs(soln[1]); |
(%i11) |
kill(all)$ diff( sin(x)/(1 + cos(x)),x); factor(%); trigsimp(%); |
(%i4) |
factor(cos(x)^2 + 2*sin(x)^2);trigsimp(cos(x)^2 + 2*sin(x)^2); trigreduce(cos(x)^2 + 2*sin(x)^2); |
(%i7) |
f(x):= x^3; depends(x,u)$ diff(f(x),u); |
(%i10) |
remove([x,u],dependency)$ x: sin(u); diff(f(x),u); |
(%i13) | kill(x)$ g(x):= sin(x); diff(f(g(u)),u); diff(f(x), u); |
(%i17) |
eqn: x^2 + y^2 = 25; depends(y,x)$ deriv_of_eqn : diff(eqn,x); solve(deriv_of_eqn,'diff(y,x)); |
(%i21) |
[a, b] : [4, 3]$ [a + b, 'a + b, a + 'b, 'a + 'b, '(a + b) ]; |
(%i23) |
kill(n)$ [diff(x^n, x), diff(x^n, x, 4), diff(x^n, x, n)]; n:8$ [diff(x^n, x), diff(x^n, x, 4), diff(x^n, x, n)]; |
(%i27) |
kill(a, r)$ area: a = %pi*r^2; depends([a,r],t)$ deriv_of_area: diff(area,t); subst([diff(r,t)=60, r=120],deriv_of_area); float(rhs(%)); |
(%i33) |
kill(all)$ f(x) := sin(x); diff(f(x) ); pickapart(%, 1)$ |
(%i5) |
ev(%t3, x = %pi/3); f(%pi/3) + %*(x - %pi/3); float(%); expand(%); |
(%i9) | L: taylor(f(x), x, %pi/3, 1); |
(%i10) |
L: taytorat(L); expand(L); float(%); |
(%i13) |
wxdraw2d( explicit(f(x), x, 0, %pi), explicit(L, x, 0, %pi) )$ |
(%i14) |
kill(all)$ f(x):=x^(3/5)*(4-x); deriv_of_f: diff(f(x),x); soln: solve(deriv_of_f, x); x_crit: rhs(soln[1]); f(x_crit) ; float(%); |
(%i7) |
fgraph: gr2d( xaxis = true, explicit(f(x), x, -0.25 , 1.5*x_crit), line_type = dots, points_joined=true, points( [ [x_crit, 0], [x_crit, f(x_crit) ] ]) )$ diffgraph: gr2d(xaxis = true, yrange=[-5, 10], explicit(deriv_of_f, x, -.25, 1.5*x_crit), point_size = 2, points_joined = true, line_type=dots, points( [[x_crit,-5],[x_crit, 10] ]) ) $ wxdraw(fgraph, diffgraph)$ |
(%i10) | second_deriv: diff(f(x), x, 2); |
(%i11) |
ev(second_deriv, x=x_crit)$ float(%); float( subst(x_crit, x, second_deriv) ); |
(%i14) |
kill(all)$ P : 2*r +2*h + %pi*r$ L : 2*r*h + %pi*r^2/4$ print("Perimeter = ", P, ", and Light = ", L)$ soln_h : solve(P = P0,h); |
(%i5) |
h_is : rhs(first(soln_h)); L_fcn_r : ratsubst(h_is,h,L); |
(%i7) |
deriv_L :diff(L_fcn_r,r); soln_r:solve(deriv_L = 0,r); |
(%i9) |
r_is: rhs(soln_r[1]); h_is_now: subst(r_is, r, h_is), ratsimp; h_is_now / r_is, ratsimp; |
(%i12) |
max_L : subst([r=r_is, h=h_is_now], L)$ ratsimp(%); |
(%i14) |
kill(all)$ depends(h,r)$ P : 2*r +2*h + %pi*r$ L : 2*r*h + %pi*r^2/4$ deriv_P : diff(P-P0,r); |
(%i5) |
solve(deriv_P, diff(h, r)); deriv_h : rhs(%[1]); |
(%i7) | deriv_L : diff(L,r); |
(%i8) | deriv_L_is: ratsubst(deriv_h, 'diff(h,r), deriv_L); |
(%i9) | solve(deriv_L_is = 0, r); |
(%i10) |
kill(all)$ V: L*W*H; S: 2*(L*W + L*H + W*H); A: V + mu*(S0 - S); |
(%i4) |
A_L : diff(A, L); A_W : diff(A, W); A_H : diff(A, H); A_mu : diff(A, mu); soln: solve([A_L, A_W, A_H], [L, W, H]); transpose( matrix(soln) ); |
(%i10) | solnL0: solve(60 - 6*L^2, L); |
(%i11) |
L0: rhs(solnL0[2]); V0: ev(V, L = L0, W = L0, H = L0); float(%); |
(%i14) |
h0: 1$ S1: 60 + h0$ solnL1 : solve(S1 - 6*L^2, L)$ L1: rhs(solnL1[2])$ V1: ev( V, L = L1, W = L1, H = L1)$ float(%); float( [(V1 - V0)/h0, L0/4]); |
(%i21) |
A2 : A + kappa*(.50 - H/L); A2_L : diff(A2, L); A2_W : diff(A2, W); A2_H : diff(A2, H); A2_mu : diff(A2, mu); A2_kappa: diff(A2, kappa); soln2: solve([A2_L, A2_W, A2_H, A2_kappa], [L, W, H, kappa])$ transpose( matrix(soln2) ); |
(%i29) |
[L2 : rhs(soln2[2][1]), W2 : rhs(soln2[2][2]), H2 : rhs(soln2[2][3]), kappa2 : rhs(soln2[2][4])]; soln_mu2 : solve(2*(L2*W2 + L2*H2 + W2*H2)- 60, mu)$ float(%); |
(%i32) |
[L2, W2, H2, kappa2] : ev([L2, W2, H2, kappa2], soln_mu2[2])$ float(%); V2 : L2 * W2 * H2$ float(%); |
(%i36) |
kill(all)$ /* Indefinite integrals */ ["Single integral: ", integrate(f(x), x), " Double integral: ", integrate(integrate(f(x,y), y), x ) ]; /* A definite integral */ ["Single definite integral: ", integrate(f(x), x, a, b) ]; |
(%i3) |
f(x, y) := x^4 / y; integrate(f(x, y),x ); integrate(%, y); integrate(f(x, y), x, 0, 5); integrate(%, y, 1, 2); float(%); |
(%i9) | integrate(integrate(f(x, y), x, 0, 5), y, 1.0, 2.0 ); |
(%i10) |
kill(R_sum)$ wxdraw2d( explicit(x^4, x, 2, 5) )$ print( R_sum: (3/n)*sum((2+3*i/n)^4,i,1,n), " = ", ratsimp(R_sum) )$ |
(%i13) |
simpsum:true$ print( "The Riemann sum of x^4 is ", R_sum: ratsimp( (3/n)*sum((2+3*i/n)^4,i,1,n) ), ", whose limit is ", float( limit(R_sum, n, infinity) ) )$ |
(%i15) | float( integrate(x^4, x, 2, 5) ); |
(%i16) |
kill(all)$ assume(x>0)$ S : lambda( [x], integrate(a*log(t),t,0,x)); answr:diff(S(x),x); ["Chain rule illustrations: ", 'diff(S(x^3),x), " = ", diff(S(x^3),x) ] ; [ 'diff(S((1/x)),x) , " = ", diff(S((1/x)),x)]; |
(%i6) |
eqn: 'diff(y,x) = sqrt(1/x^2-1/x^3); integrate(rhs(eqn), x); ode2(eqn,y,x); |
(%i9) |
kill(all)$ [f1, f2] : [x^2 + 10, -2*x^2 + 25*x]$ wxdraw2d(title = "Region bounded by two functions", fill_color = gray, filled_func = f2, explicit(f1,x,0,10), filled_func = false, line_width = 2, key = concat("f1: ", string(f1) ), color = red, explicit(f1,x,0,10), key = concat("f2: ", string(f2) ), color = blue, explicit(f2,x,0,10) )$ |
(%i3) | soln : solve(f1=f2, x)$ float(%); |
(%i5) |
x1 : rhs(soln[1])$ x2: rhs(soln[2])$ float( integrate(f2 - f1, x, x1, x2) ); |
(%i8) |
A : (sec(x))^2 - 1; B : trigsimp(A); integrate(A, x, -1, 1); integrate(B, x, -1, 1); float(%); |
(%i13) |
kill(f)$ limit('integrate(f(x), x, a, c - %epsilon)) + 'integrate(f(x), x, c + %epsilon, b); |
(%i15) |
A : x*cos(x)^-1; B: trigreduce(z); integrate(z, x, 0, %pi/2); integrate(x*cos(x)^-1, x, 0, %pi/2); |
(%i19) |
[%pi*'integrate(cos(x)^2, x, 0, %pi/2), " = ", %pi*integrate(cos(x)^2, x, 0, %pi/2)] ; |
(%i20) |
halfangles: true$ A: cos(x)^2; B: trigreduce(A); C: trigexpand(B); D: trigsimp(C); |
(%i25) |
f(x, a, b) := x^a - b*log(x); [a0, b0] : [0.8, 5]$ solve(f(x, a0, b0), x); |
(%i28) |
wxdraw2d( xaxis = true, yaxis = true, explicit(f(x, a0, b0), x, -10, 50))$ |
(%i29) | find_root(f(x, a0, b0), x, 1, 50); |
(%i30) |
find_root(f(x, a0, b0), x, 0.001, 10); f(%, a0, b0); |
(%i32) |
find_root(f(x, a0, b0), x, 30, 50); f(%, a0, b0); |
(%i34) |
load(newton1)$ newton(f(x, a0, b0), x, 1, .0000000001); newton(f(x, a0, b0), x, 40, .0000000001); |
(%i37) |
kill(all)$ f(x,y) := 2*(3^x) - y/x - 5; g(x,y) := x + 2^y - 4; wxdraw2d( key = "f(x, y)", implicit(f(x,y), x, -2, 5, y, -2, 5), color = green, key = "g(x, y)", implicit(g(x,y), x, -2, 5, y, -2, 5) )$ |
(%i4) |
load(mnewton)$ soln1: mnewton( [f(x, y), g(x, y)], [x, y], [-1, 2] ); soln2: mnewton( [f(x, y), g(x, y)], [x, y], [1, 1.5] ); |
(%i7) |
[x1, y1] : [rhs(soln1[1][1]), rhs( soln1[1][2]) ]; [x2, y2]: [rhs(soln2[1][1]), rhs( soln2[1][2]) ]; [ f(x1, y1), g(x1, y1) ]; [f(x2, y2), g(x2, y2)] ; |
(%i11) |
kill(all)$ my_newt(f,guess,prec):= block([f_x,der_x,x_new], f_x : f(guess), der_x : subst(guess,x, diff(f(x),x)), x_new : guess - f_x/der_x, if abs(x_new - guess) < prec then return(guess) else my_newt(f,x_new,prec))$ g: lambda([x],x^2 -2); my_newt(g,1.5,.0001); |
(%i4) |
kill(all)$ f(x) := x^(1/2)*log(1/x)$ wxdraw2d( explicit(f(x), x, 0, 1) )$ integrate(f(x), x, 0, 1); float(%); |
(%i5) | romberg(f(x), x, 1e-100 , 1 ); |
(%i6) | quad_qag (f(x), x, 0, 1, 3); |
(%i7) |
g(x, y) := x*y / (x + y); estimate : romberg (romberg (g(x, y), y, 0, x/2), x, 1, 3); assume(x > 0)$ integrate (integrate (g(x, y), y, 0, x/2), x, 1, 3); float(%); |
(%i12) |
kill(all)$ a: 10$ b: 28$ c: 2.667$ dxdt : a*(y - x); dydt: x*(b - z) - y; dzdt : x*y - c*z; |
(%i7) |
fpprintprec:5$ data: rk([dxdt, dydt, dzdt],[x,y,z],[-15,20,-5],[t,0,100,0.01])$ matrix( ["time", "x", "y", "z"], data[1], data[2], ["...", "...","...","..."], data[length(data) - 1], data[length(data)] ); |
(%i10) |
uL: makelist([data[i][2],data[i][3],data[i][4]],i,1,length(data))$ wxdraw3d(view = [36, 336], ylabel = "y", xaxis=true, yaxis=true, points(uL))$ |